Outline

• Challenges to exploration performance and value creation
• Impact of CSEM in exploration uncertainty
• Performance of CSEM in prospect evaluation
• Challenges to the application of CSEM and value realization
Value of exploration

\[V_{\text{exp}} = NPV_e \, P_e - (1 - P_e) \, C_{\text{exp}} \]

- **Gains term**
- **Losses term**

Vexp is Value of Exploration
NPVe is the average Net Present Value of an economic success
Pe is the probability of an economic success
Cexp is the Cost of Exploration

• Pe is the main Value of Exploration driver
Evaluation workflow

UNCERTAINTY ↔ Pe

Volume estimation

Area
Net thickness
Porosity
Saturation
Rf
FVF

PoS

Trap
Reservoir
Charge
Seal

Pe
A better exploration outcome

Typical exploration failures: most failures are due to the fluid component
PORTFOLIO VS PROSPECT

Prediction Performance

Gulf of Mexico, Amplitude Supported Plays

- Prediction capability limited on an individual prospect basis
- Large fields have been systematically under predicted (Mars Basin)
- Small fields have been systematically over predicted (creaming effect)
VOLUME ESTIMATION UNCERTAINTY

RV = NRV Φ Shc Rf / FVF

The net rock volume is the main source of recoverable volume uncertainty.
Decision making under uncertainty

Pe ~ 5-50%

Can EM do something to improve this?

Area
Net thickness
Porosity
Saturation
Rf
FVF

Volume estimation

Trap
Reservoir
Charge
Seal

PoS

Pe
3D EM TECHNOLOGY

What EM does:
Image subsurface resistivity

Acquisition
Water depth
20 – 3500m

CSEM Measurement
Sensitivity
0 – 3500m
CSEM SENSITIVITY FOR A SPECIFIC TARGET

The larger the resistive body, the larger the EM signal.
Decision making under uncertainty

- Trap
- Reservoir
- Charge
- Seal

CSEM result

Integration with seismic & well log data
CSEM sensitivity
Rock property uncertainties
CSEM uncertainties

Area
- Net thickness
- Porosity
- Saturation
- Rf
- FVF

Volume estimation

PoS

Pe
Barents Sea example

Courtesy: Det Norske
Volume prediction with CSEM

- Prediction capability limited on an individual prospect basis
- Large fields have been systematically under predicted (Mars Basin)
- Small fields have been systematically over predicted (creaming effect)

Do we need exploration to optimize EP portfolios? IQPC Portfolio Optimization in Oil and Gas, Houston, TX, February 2004.

Copyright 2013, Daniel Zweidler & Associates, Inc.
Exploration Portfolio before 3D CSEM

Note: only CSEM feasible prospects included in this portfolio
Exploration portfolio after 3D CSEM

Note: only CSEM feasible prospects included in this portfolio
Exploration portfolio after 3D CSEM

Note: only CSEM feasible prospects included in this portfolio
Exploration portfolio after 3D CSEM

Note: only CSEM feasible prospects included in this portfolio
Portfolio before and after 3D EM

- 14 wells drilled
- 1 economic success
- 3 mid-sized discoveries
- 10 dry wells / technical success
- Pe no EM = 7%
- Pe with EM = 33 %
Decision making under uncertainty

Pe ~ 5-50%

Can EM do something to improve this?

Yes, evidence from Brazil, Mexico, and the Barents Sea prove this is the case.
Challenges to CSEM adoption and application

- Data
 - Information
 - Evaluation
 - Decision

- Workflows
 - Interpreters

2002
2008
2012
Conclusion

- Pe is the main Value of Exploration driver

- Fluid presence and net rock volume evaluation uncertainties prevent Pe improvement

- Resistivity derived from CSEM allows for a significant reduction of the main uncertainties and increase of Pe

- Needs to be adopted systematically
 - Workflows must be adapted
 - Interpreters have to be trained

- The exploration workflow will need to change to adapt to the new tool

- EMGS offers an integral CSEM solution for hydrocarbon exploration